Jutge.org

The Virtual Learning Environment for Computer Programming

Football rivalry (2)

P94654_en
Novè Concurs de Programació de la UPC - Final (2011-09-21)
Two long-time rival football teams, let us call them B (for beautiful manners) and M (for miserable - very, very miserable - manners), are playing again. Both teams are exhausted, so the first to score a goal will win the game for sure. At this moment, team B has the ball. If they decide to attack, there is a probability w_{B} that they manage to score, thus winning the game. Hovewer, with probability ℓ_{B} they will receive a goal, thus losing the game. With probability $1-w_{B}-\ell_{B}$ they will just lose the possesion of the ball. Team B has another option: to pass the ball around. In that case, the possesion of the ball will eventually go to team M. Then we will have a simmetrical situation: If team M goes for an attack, they will immediately win with probability w_{M}, they will immediately lose with probability ℓ_{M}, and the ball will go back to team B with probability $1-w_{M}-\ell_{M}$. If they decide to just pass the ball and wait, eventually the possesion of the ball will go back to team B.
Given w_{B}, ℓ_{B}, w_{M} and ℓ_{M}, and assuming that both teams take the best decisions (to attack or not to attack) and that team B has the ball now, which is the probability that team B will win?

Input

Input consists of several cases, each one with four real numbers w_{B}, ℓ_{B}, w_{M} and ℓ_{M} between 0 and 1 . Assume $w_{B}+\ell_{B} \leq 1$ and $w_{M}+\ell_{M} \leq 1$.

Output

For every case, print the probability that team B will win with four digits after the decimal point. (The input cases have no precision issues.) A situation where no goal will be scored (an eternal tie) is similar to a fifty-fifty situation. Consequently, print " 0.5000 " in this case.

Sample input

1	0	0.7	0.2
0.3	0.6	1	0
0	0	0.3	0.6
0	0	0.1	0
0.4	0.2	0	1
0	1	0.4	0.2
0.4	0.2	0.4	0.2
0	0	0	0

Sample output

1.0000
0.3000
0.5000
0.0000
0.6667
0.3333
0.5714
0.5000

Problem information

Author : Salvador Roura
Generation : 2024-05-03 09:24:11
© Jutge.org, 2006-2024.
https://jutge.org

