Jutge.org

The Virtual Learning Environment for Computer Programming

Arithmetic derivative

Vintè Concurs de Programació de la UPC - Semifinal (2022-06-15)
Given a natural number n, its arithmetic derivative $d(n)$ is defined as follows:

- $d(0)=d(1)=0$.
- If n is prime, then $d(n)=1$.
- Let $n=x \cdot y$, with $1<x, y<n$. Then $d(n)=x \cdot d(y)+y \cdot d(x)$.

For instance, $d(4)=2 d(2)+2 d(2)=2+2=4$, and $d(6)=3 d(2)+2 d(3)=3+2=5$. It can be proven that this definition is consistent. For example, $d(12)=4 d(3)+3 d(4)=$ $4+12=16$, and also $d(12)=6 d(2)+2 d(6)=6+10=16$.

We say that f is a fixed point of $d(n)$ if $d(f)=f$. For instance, 0 and 4 are fixed points. Given ℓ and r, can you compute the number of fixed points of $d(n)$ in $[\ell . . r]$?

Input

Input consists of several cases, each one with ℓ and r, with $0 \leq \ell \leq r \leq 10^{18}$.

Output

For each case, print the number of fixed points of $d(n)$ in $[\ell . . r]$.

Sample input

04
20
44
523
9000000000000000001000000000000000000

Sample output

$\bigcirc ○ \mapsto \mapsto N$

Problem information

Author: Salvador Roura
Generation : 2024-05-03 00:57:48
© Jutge.org, 2006-2024.
https://jutge.org

