Jutge.org

The Virtual Learning Environment for Computer Programming

Weighted shortest path (5)

P68936_en
Write a program that, given a directed graph with postive and/or negative costs at the arcs (but no negative cycles), and two vertices x and y, computes the minimum cost to go from x to y.

Input

Input consists of several cases. Every case begins with the number of vertices n and the number of arcs m. Follow m triples u, v, c, indicating that there is an $\operatorname{arc} u \rightarrow v$ of cost c, where $u \neq v,-1000 \leq c \leq 1000$ and $c \neq 0$. Finally, we have x and y. Assume $1 \leq n \leq 10^{4}$, $0 \leq m \leq 5 n$, and that for every pair of vertices u and v there is at most one arc of the kind $u \rightarrow v$. All numbers are integers. Vertices are numbered from 0 to $n-1$. The directed graph has no negative cycles.

Output

For every case, print the minimum cost to go from x to y, if this is possible. If there is no path from x to y, state so.

```
Sample input
6 10
    1 0 6
    1 5 15
    3 4 3
    3 1 8
    4 0 20
    0 5
    0 2 1
    5 1 10
    4 1 2
    2 3 4
3 5
2 1
    0 1 1000
10
8 11
    0 1 10
    078
    1 5 2
    2
    2 3 1
    3 4 3
    4 5-1
    5 2 -2
    6 5 -1
    6 1 -4
    7 1
O 1
```


Sample output

16
no path from 1 to 0
5

Problem information

Author : Jordi Petit
Generation : 2024-05-02 22:04:10
© Jutge.org, 2006-2024.
https://jutge.org

