Jutge.org

The Virtual Learning Environment for Computer Programming

Weighted shortest path (5)

Write a program that, given a directed graph with postive and/or negative costs at the arcs (but no negative cycles), and two vertices x and y, computes the minimum cost to go from x to y.

Input

Input consists of several cases. Every case begins with the number of vertices n and the number of arcs m. Follow m triples u, v, c, indicating that there is an arc $u \rightarrow v$ of cost c, where $u \neq v$, $-1000 \leq c \leq 1000$ and $c \neq 0$. Finally, we have x and y. Assume $1 \leq n \leq 10^4$, $0 \leq m \leq 5n$, and that for every pair of vertices u and v there is at most one arc of the kind $u \rightarrow v$. All numbers are integers. Vertices are numbered from 0 to n - 1. The directed graph has no negative cycles.

Output

Sample input	Sample output
6 10 1 0 6 1 5 15 3 4 3 3 1 8 4 0 20 0 5 5 0 2 1 5 1 10 4 1 2 2 3 4	16 no path from 1 to 0 5
3 5	
2 1 0 1 1000 1 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

For every case, print the minimum cost to go from x to y, if this is possible. If there is no path from x to y, state so.

Problem information

Author : Jordi Petit Generation : 2024-05-02 22:04:10

© *Jutge.org*, 2006–2024. https://jutge.org