Jutge.org

The Virtual Learning Environment for Computer Programming

Cheapest triangulation

Given a simple polygon with n vertices, there is always at least one way to decompose it in triangles by adding $n-3$ diagonals. For instance, these are three of the many triangulations of the same polygon:

Define the cost of a triangulation as the sum of the lengths of the diagonals that have been added. Given a convex polygon, what is the cost of its cheapest triangulation?

Input

Input consists of several cases. Every case begins with n. Follow n pairs of real numbers $x y$ giving the coordinates of the points of the polygon, either in clockwise or in anticlockwise order. Assume $3 \leq n \leq 100$.

Output

For every given polygon, print the cost of its cheapest triangulation with four digits after the decimal point. The input cases have no precision issues.

Sample input

$\begin{array}{lllllllllllll}3 & 0 & 0 & 0 & 1 & 1 & 0 & & & & & & \\ 4 & 0 & 0 & 2 & 0 & 2 & 2 & 0 & 1 & & & & \\ 5 & -1.2 & 3 & 0 & 4 & 1 & 2.7 & 1 & -1 & 0 & -0.5\end{array}$

Sample output

0.0000
2.2361
5.5730

Problem information

Author : Salvador Roura
Generation : 2024-05-02 21:26:05
© Jutge.org, 2006-2024.
https://jutge.org

