Jutge.org

The Virtual Learning Environment for Computer Programming

Cheapest triangulation

Given a simple polygon with n vertices, there is always at least one way to decompose it in triangles by adding n - 3 diagonals. For instance, these are three of the many triangulations of the same polygon:

Define the cost of a triangulation as the sum of the lengths of the diagonals that have been added. Given a *convex* polygon, what is the cost of its cheapest triangulation?

Input

Input consists of several cases. Every case begins with *n*. Follow *n* pairs of real numbers *x y* giving the coordinates of the points of the polygon, either in clockwise or in anticlockwise order. Assume $3 \le n \le 100$.

Output

For every given polygon, print the cost of its cheapest triangulation with four digits after the decimal point. The input cases have no precision issues.

Sample input										Sample output
3	0 0	0	1	1	0					0.0000
4	0 0	2	0	2	2	0 1				2.2361
5	-1.2	3	0	4	1	2.7	1 -1	0 -0.5		5.5730

Problem information

Author : Salvador Roura Generation : 2024-05-02 21:26:05

© *Jutge.org*, 2006–2024. https://jutge.org