Jutge.org

The Virtual Learning Environment for Computer Programming

Permutations and cycles (1)

P64069_en
Examen parcial d'Algorísmia, FME (2017-11-06)
Write a program to count the number of permutations of $\{1, \ldots, n\}$ with exactly k cycles, where $1 \leq k \leq n$.
For instance, of the six permutations of $\{1,2,3\}$, we have:

- two with one cycle, which are: $(2,3,1)$ and $(3,1,2)$.
- three with two cycles, which are: $(2,1,3),(1,3,2)$ and $(3,2,1)$.
- one with three cycles, which is: $(1,2,3)$.

Input

Input consists of several cases, each with n and k, such that $1 \leq k \leq n \leq 1000$.

Output

For every case, count the number of permutations of $\{1, \ldots, n\}$ with k cycles. As the result can be very large, make the computations modulo $10^{8}+7$.

Observation

Let c be the number of cases. The expected solution has total $\operatorname{cost} O\left(1000^{2}+c\right)$. You can get up to 80 points with test cases where $n \leq 100$, with a solution with $\operatorname{cost} O\left(100^{3}+c\right)$.

Sample input

32
33
41
42
43
44
102
2010
10050

Sample output

2
3
1
6
11
6
1
1
2
68128793

Problem information

Author: Enric Rodríguez
Translator: Salvador Roura
Generation : 2024-05-02 21:06:09
© Jutge.org, 2006-2024.
https://jutge.org

