Jutge.org

The Virtual Learning Environment for Computer Programming

Cycle detection

Setè Concurs de Programacio de la UPC - Final (2009-09-16)
For any function f that maps a finite set to itself, and for any initial value x_{0} in the set, the sequence of values $x_{0}, x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \ldots, x_{k}=f\left(x_{k-1}\right), \ldots$ eventually repeats some values, i.e., there is some $i \geq 0$ and some $j>i$ such that $f\left(x_{j}\right)=f\left(x_{i}\right)$. Once this happens, the sequence continues by repeating the cycle from x_{i} to x_{j-1}.
For instance, the function that maps $(0,1,2,3,4,5,6,7,8)$ to $(6,6,0,1,4,3,3,4,0)$ generates the following sequence when $x_{0}=2$:

$$
20631631631 \ldots
$$

In this sequence, the beginning of the cycle (631) is found after 2 steps. In this case, $i=2$, $j=5$, and the periodicity is $j-i=3$.
Given a function that maps the interval $[0, n-1]$ to itself, and several starting values x_{0}, compute the corresponding values of $j-i$ and i.

Input

Input starts with the number of cases. Every such case begins with two integer numbers $1 \leq n \leq 10^{5}$ and $0 \leq k \leq 10 n$. Follow, in order, the n images of the numbers in $[0, n-1]$. Follow k numbers: the $x_{0}{ }^{\prime} s$ for which the result must be computed.

Output

For every case, print its number and k lines each one with $j-i$ and i.

Observation

Since some of the private cases are huge, a recursive program may exhaust the recursion stack.

```
Sample input
1
6
3
1 0
1 2
3
2 3 2
O 1
```


Sample output

Case \#1:
32
Case \#2:
20
10
20
Case \#3:
21
22
21

Problem information

Author: Xavier Martínez
Generation : 2024-04-30 18:57:14
© Jutge.org, 2006-2024.
https://jutge.org

