Jutge.org

The Virtual Learning Environment for Computer Programming

Extended Fibonacci numbers

P25832_en

Catorzè Concurs de Programació de la UPC - Final (2016-09-21)

The well known Fibonacci numbers are defined recursively as follows: $F_0 = 0$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2}$ for $i \ge 2$. The first Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21,

Let us generalize the Fibonacci numbers. For every pair of natural numbers *a* and *b*, define the sequence $S(a, b) = [f_0, f_1, ...]$ as $f_0 = a$, $f_1 = b$, $f_i = f_{i-1} + f_{i-2}$ for $i \ge 2$. Note that S(0, 1) is the traditional Fibonacci sequence.

You are given a natural number *n*. Please compute how many pairs (a, b) exist such that S(a, b) has a $i \ge 3$ where $f_i = n$. For instance, for n = 2 there are exactly three such sequences: S(0, 1) = [0, 1, 1, 2, ...], S(1, 0) = [1, 0, 1, 1, 2, ...], and S(2, 0) = [2, 0, 2, 2, ...].

Input

Input consists of several cases, each with a different natural number n between 1 and 10^6 .

Output

For every *n*, print the number of pairs (a, b) such that *n* appears at a position $i \ge 3$ in S(a, b).

Hint

Depending on your solution, Cassini's identity could be useful: $F_{i-1} \cdot F_{i+1} - F_i^2 = (-1)^i$.

Sample input

2	3
1	1
3	4
9	8
10	10
1000	780
100000	773883

Problem information

Author : Salvador Roura Generation : 2024-04-30 17:52:16

© *Jutge.org*, 2006–2024. https://jutge.org

Sample output