Jutge.org

The Virtual Learning Environment for Computer Programming

Extended Fibonacci numbers

Catorzè Concurs de Programació de la UPC - Final (2016-09-21)
The well known Fibonacci numbers are defined recursively as follows: $F_{0}=0, F_{1}=1$, $F_{i}=F_{i-1}+F_{i-2}$ for $i \geq 2$. The first Fibonacci numbers are $0,1,1,2,3,5,8,13,21, \ldots$.
Let us generalize the Fibonacci numbers. For every pair of natural numbers a and b, define the sequence $S(a, b)=\left[f_{0}, f_{1}, \ldots\right]$ as $f_{0}=a, f_{1}=b, f_{i}=f_{i-1}+f_{i-2}$ for $i \geq 2$. Note that $S(0,1)$ is the traditional Fibonacci sequence.
You are given a natural number n. Please compute how many pairs (a, b) exist such that $S(a, b)$ has a $i \geq 3$ where $f_{i}=n$. For instance, for $n=2$ there are exactly three such sequences: $S(0,1)=[0,1,1,2, \ldots], S(1,0)=[1,0,1,1,2, \ldots]$, and $S(2,0)=[2,0,2,2, \ldots]$.

Input

Input consists of several cases, each with a different natural number n between 1 and 10^{6}.

Output

For every n, print the number of pairs (a, b) such that n appears at a position $i \geq 3$ in $S(a, b)$.

Hint

Depending on your solution, Cassini's identity could be useful: $F_{i-1} \cdot F_{i+1}-F_{i}^{2}=(-1)^{i}$.

Sample input

2
1
3
9

10
1000
1000000

Sample output

3
1
4
8
10
780
773883

Problem information

Author: Salvador Roura
Generation : 2024-04-30 17:52:16
© Jutge.org, 2006-2024.
https://jutge.org

