Jutge.org

The Virtual Learning Environment for Computer Programming

Do it for the kids, Chuck!

Cinquè Concurs de Programació de la UPC - SemiFinal (2007-09-19)
A gang of n vicious drug dealers is surrounding Walker, the world's favourite Texas ranger. But do not worry! This would be a critical situation for most people, but not for Walker. He can hit all of them with just a single of his "spinning kicks".
However, as this is a TV series, the co-guionist Aaron Norris has reminded his brother (the great actor Chuck Norris starring as Walker) that he should take care of several restrictions:

- Drug dealers can only be hitted increasingly, from drug dealer 1 to drug dealer n. (This is because of the location of the camera.)
- Walker can only hit each drug dealer i at some specific time t_{i} known in advance. (This is due to the insurance that any actor working with Chuck has to take.) Therefore, Walker cannot hit two drug dealers $i<j$ such that $t_{i}>t_{j}$ with the same spinning kick.
- The time between two hits should be at least 10 ms . (Even a slow motion camera cannot properly film Chuck's kicks if they are too quick.) This implies that Walker cannot hit with the same kick two drug dealers $i<j$ such that $t_{j}-t_{i}<10 \mathrm{~ms}$.
- "We must follow these rules, Chuck", Aaron says. "I'm sure it's not hard for you to find the maximum number of guys you can hit with a single spinning kick under these restrictions."
- "Indeed, it is not", Chuck replies after thinking for a couple of microseconds.
- "Then, Chuck, please, follow these rules. Do it for the kids, Chuck!"
- "Alright."

Can you write a program to compute the maximum number of drug dealers that Chuck can hit with a single spinning kick under the given restrictions?

Input

Input begins with a number $t \geq 0$. Follow t test cases, each with the number $0<n \leq 2000$ of drug dealers, followed by t_{1}, \ldots, t_{n} in ms. Each t_{i} satisfies $0 \leq t_{i} \leq 10^{9}$. (Chuck can really give such loooong spinning kicks. Indeed, he is a 6 -time Karate World Champion!)

Output

Print t lines with the answers.

Observation

Due to his Cherokee upbringing, Chuck can solve this problem in $\Theta(n \log n)$ time. But you may be not as good a programmer as Chuck, so the Judge will accept quadratic solutions.

Sample input

6
220002010
3700070097018
$480007000 \quad 60005000$
1100
$\begin{array}{lllllllllll}10 & 0 & 11 & 45 & 23 & 30 & 48 & 19 & 11 & 60 & 73\end{array}$
$\begin{array}{llllllllllllll}13 & 84 & 85 & 94 & 105 & 45 & 107 & 32 & 68 & 45 & 109 & 67 & 77 & 120\end{array}$

Sample output

2
2
1
1
6
5

Problem information

Author : Omer Gimémez
Generation : 2024-04-30 17:51:43
© Jutge.org, 2006-2024.
https://jutge.org

