Jutge.org

The Virtual Learning Environment for Computer Programming

Generalized chess knight

Dotzè Concurs de Programació de la UPC - Final (2014-10-01)
Let us define an (a, b) knight as a piece that moves by jumping a cells in one direction and b cells in the other direction, where the possible directions are horizontal and vertical. For instance, the traditional chess knight is a $(1,2)$ knight.
Given an $n \times m$ board with obstacles, an initial position $\left(i_{1}, j_{1}\right)$, a final position $\left(i_{2}, j_{2}\right)$, and the pair (a, b), can you tell if an (a, b) knight initially located at $\left(i_{1}, j_{1}\right)$ can reach $\left(i_{2}, j_{2}\right)$ in two or less steps? The knight can never leave the board, nor visit any obstacles.

Input

Input consists of several cases, each with n and m, followed by the board (n lines with m characters each, where an ' x ' indicates an obstacle and a '.' indicates a free cell), followed by $i_{1}, j_{1}, i_{2}, j_{2}, a$ and b. Assume that n and m are between 1 and 42 , that $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ are free positions inside the board, and $1 \leq a<b \leq 5$. The upper-left position is $(0,0)$.

Output

For every case, print "yes" or "no" depending on whether the goal position is reachable from the initial position in two or less steps.

Sample input

```
2 3
...
0
4 5
.....
XXXXX
XXXXX
0}1130301
5 5
. XXX.
XXXXX
XXXXX
XXXXX
XX.XX
O 4 0 0 2 4
5 5
. XXX.
XXXXX
XXXXX
XXXXX
XXXXX
04 0 0 2 4
```

Sample output	yes
yes	no
yes	yes

Problem information

Author : Enric Cusell
Generation : 2024-04-30 17:11:35
© Jutge.org, 2006-2024.
https://jutge.org

